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In this paper we consider the development of shear dispersion following the intro- 
duction of a diffusing tracer substance into a tube or duct containing flowing fluid, 
with emphasis on the characterization of the temporal variation of concentration at 
a fixed axial position. Asymptotic results are derived by assuming that the distance 
downstream of the point of tracer introduction, appropriately non-dimensionalized, 
is large. First, we consider the central moments of the temporal concentration varia- 
tion, including their dependence on transverse position and on the initial transverse 
distribution of tracer. The moments for finite PCclet number are expressed in terms 
of their infinite-PCclet-number counterparts, and the latter are given explicitly for 
Poiseuille flow. Then, assuming the Pkclet number is infinite, we derive an approxi- 
mate solution for the Green's function expressing tracer concentration following its 
introduction at an arbitrary point within the tube. The solution is expressed in 
terms of three numerically evaluated functions of a dimensionless time variable, with 
parametric dependence on the distance downstream of the point of tracer release. 
The method is illustrated by calculation of the approximate solution for dispersion 
in Poiseuille flow. Unlike previous approximations, the present solution is uniformly 
asymptotic and represents the tails of the concentration distribution as well as the 
approximately Gaussian central part; in these three regions, simpler analytic forms 
of the approximation are given. Comparison with previous computational solutions 
suggests the present approximation remains reasonably accurate even at quite short 
distances from the point where tracer is released. 

1. Introduction 
The basic phenomenon of dispersion in shear flows has been understood since 

Taylor (1953, 1954) considered the transport of a diffusing tracer substance following 
its introduction into Poiseuille flow. He showed that, because of its diffusive migration 
between different streamlines, the tracer eventually experiences not only translatory 
motion with the mean flow velocity, but also an apparently diffusive spreading in the 
axial direction. When the PCclet number P ,  which expresses the strength of advection 
relative to diffusion, is large, the effective diffusivity greatly exceeds the molecular 
diffusivity of the tracer. As a result, at large times, the tracer concentration distribution 
can be approximated by a Gaussian whose mean translates with the average flow 
velocity and whose variance increases at a rate determined by this effective diffusivity, 
or shear dispersion coefficient. In this approximation, the concentration is uniform 
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over the cross-section of the tube, and depends only on the initial axial position of 
tracer, not on its initial cross-sectional distribution. 

Since the original work of Taylor (and its extension by Aris 1956 to include the 
additional contribution of molecular diffusivity to axial dispersion) there have been 
many further studies, with applications ranging from the spreading of pollutants in 
rivers and estuaries, through chemical engineering processes such as chromatography, 
to gas transport in the bronchial airways and the dispersion of tracers in blood 
vessels. The theory has been developed in two main directions. On the one hand, 
it has been shown that similar shear dispersion occurs in a range of other systems, 
and the corresponding dispersion coefficients have been evaluated (the examples 
include turbulent pipe flow, flow in channels, oscillatory flow, flow in pipes or ducts 
with transfer of heat or mass between phases, or with chemical reactions, or with 
sedimentation, and flow which is not unidirectional but is spatially periodic). On the 
other hand, it has been recognized that dispersive transport may take a significant 
time to become established following the introduction of the tracer substance, since 
it develops on the timescale required for a molecule to diffuse transversely across the 
tube. As a result, the Gaussian approximation derived by Taylor may not be adequate 
at a given location if the tube is short or if the Piclet number is high. Under these 
conditions, not only is the axial distribution non-Gaussian, but the radial distribution 
is non-uniform and the concentration depends on the initial radial distribution of 
tracer as well as its axial position. The form of the developing concentration 
distribution appropriate at earlier times has been investigated extensively, using a 
variety of approaches. One of the most common, following Aris (1956), is to calculate 
the time-evolution of the axial moments of the tracer distribution. For Poiseuille 
flow, such moments have been calculated in various cases by Chatwin (1970), Gill & 
Sankarasubramanian (1970, 1971) and Smith (198127, 1982~1, 1984). 

Other investigators have found asymptotic approximations for the spatial concen- 
tration distribution rather than calculating the axial moments. Some of these are 
appropriate at very short times, when the effect of diffusion is to modify slightly the 
effect of pure advection, so that dispersion is absent and the initial tracer distribution 
is all-important (e.g. Lighthill 1966; Stokes & Barton 1990). Others are appropriate 
at large times, and essentially describe small departures from the Gaussian form, 
including the weak radial dependence of the concentration (Chatwin 1970, later ex- 
tended by Stokes & Barton 1990). They suffer, however, from not being uniformly 
asymptotic, in the sense that however large the time is, accuracy is lost at some point 
in the description of the tails of the axial distribution. 

In addition to these asymptotic solutions, there have been many other approximate 
treatments, some of them semi-empirical, aimed at allowing efficient computational 
estimation of the concentration distribution (e.g. Gill & Sankarasubramanian (1970, 
1971), Smith (1981a, 198227, 1987a,b, 1990, 1995), Young & Jones (1991), Camacho 
(1993)). In addition, concentration distributions have been calculated by computa- 
tional solution of the full advection-diffusion equation (e.g. Shankar & Lenhoff 1989, 
1991; Stokes & Barton, 1990). 

The emphasis in dispersion studies has generally been on characterizing the axial 
concentration distribution at different times. However, in practical applications, what 
is often required is knowledge about the variation with time of the concentration at 
a fixed axial position. Unfortunately, there is no straightforward equivalence between 
the spatial moments at a fixed time and the temporal moments at a fixed position, 
which limits the applicability of the traditional approach to the study of developing 
dispersion. In particular, even in developed dispersion the temporal moments beyond 
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the mean are not equal to those for a translating, spreading Gaussian, though some 
attempts have been made to calculate them on this assumption (Levenspiel & Smith 
1957; Ultman & Weaver 1979). However, for a general class of problems with infinite 
P there have been calculations of the temporal mean and variance (Smith 1984, 1985) 
and, at leading order, of the temporal skewness (Chatwin 1980; Smith, 1984). The 
first three temporal moments have also been calculated numerically for parabolic 
flow in a channel by Tsai & Holley (1978, 1980). Of course, analytic approximations 
for the full concentration distribution, rather than its moments, are applicable to 
both temporal and spatial measurements; there have also been some computational 
calculations of the time-varying concentration at a fixed position (Shankar & Lenhoff 
1989, 1991). 

In this paper we use asymptotic techniques to investigate the development of 
shear dispersion, with emphasis on the temporal variation of concentration at a 
fixed position downstream of the point where the tracer is released. Two stages of 
approximation are involved, both based on the assumption that the appropriately 
non-dimensionalized downstream distance, z ,  is large. First, in treating the temporal 
moments ($3), we neglect contributions which decay exponentially with z .  In this 
approximation, we show how to express the finite-P temporal moments in terms 
of their infinite-P counterparts (unlike the relationship for axial moments, this is 
not trivial). For Poiseuille flow and for infinite P ,  we calculate explicitly the first 
three central moments of the temporal distribution, including the dependence on 
transverse position and on the initial transverse distribution of tracer. The second 
stage (9$4,5) is to neglect, in addition, contributions which are algebraically small 
when z is large. Assuming once again that P is infinite, we derive a uniformly 
asymptotic approximation for the Green’s function expressing the temporal (and 
radial) downstream concentration distribution, when tracer is initially concentrated 
at an arbitrary point in the tube. Results are given for Poiseuille flow, and the 
behaviour is examined in the central region, where Taylor’s approximation applies, 
and in the tails of the distribution. The accuracy of the approximation is investigated 
by comparison with numerical solutions (Shankar & Lenhoff, 1991). Finally, in $6, as 
an illustration we summarize the main steps of the derivation and give examples of 
the approximate solutions for dispersion in Poiseuille flow in dimensional form. 

2. Mathematical formulation 
For generality, we consider initially the transport of a tracer substance in a tube or 

duct of arbitrary uniform cross-section, as a result of advection by a unidirectional 
(and so axially uniform) but otherwise arbitrary flow field, and diffusion with an 
isotropic and uniform diffusivity. Denoting dimensional time by T ,  axial distance 
by Z ,  transverse position by R and axial velocity by V(R) ,  we define, as usual in 
dispersion studies, the dimensionless variables 

t = DT/a2, z = Z/Pa, Y = R/u,  V(V) = V(R)/Vm, (2.1) 

where D is the tracer diffusivity, a a representative dimension of the cross-section, 
V, the cross-sectionally averaged velocity and P the Pkclet number expressing the 
relative importance of advection and diffusion : 

P = V,a/D. (2.2) 

When the tube is circular it is natural to set the lengthscale a equal to its radius; it will 
be convenient to extend this definition to the general case by choosing a so that the 
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cross-sectional area of the tube is na2. With this choice, if dt’ denotes the total mass 
of tracer present, a suitably non-dimensionalized version of the tracer concentration 
C is 

c = nV,,,a4C/dt’D. (2.3) 
In terms of the variables just defined, the dimensionless form of the advection- 
diffusion equation within the tube is 

ac ac a 2 C  
- at + v(r)- aZ = V ~ C  + p-2-, a z 2  

in which V, represents the part of the vector differential operator corresponding to 
the transverse spatial variable r. The walls of the tube are assumed to be impermeable 
to tracer, so the boundary condition there is 

in which a/an  is the normal derivative, K the cross-section of the tube and aK its 
boundary. The most general initial condition is of the form 

c = co(v,z) at t = 0. (2.6) 

We apply a Fourier transform with respect to axial distance and a Laplace transform 
with respect to time: 

0 0 0 0  

Z(r, k, s )  = 2 F c  = 1 1, c(r, z ,  t )  exp(-ikz - s t )  dz dt, (2.7) 

where 2 and F represent the Laplace and Fourier transforms respectively. The 
governing equation for the transformed concentration C is 

(2.8) vy2c- (s + iku(r) + k 2 F 2 )  c = -Fco. 

Since the problem is linear in c, using the principle of superposition the solution may 
be expressed in terms of a Green’s function G(r, z ,  t ;  YO) which satisfies the governing 
equation (2.4) and the initial condition 

G(r,z,O;ro) = n6(r - r0)6(z), (2.9) 

where 6 is the Dirac delta function, so that the tracer is initially concentrated at 
the point r = yo, z = 0. The choice of normalization implies that the z-integrated 
concentration per unit area of the cross-section tends to unity at long times. The 
general solution satisfying (2.6) can then be expressed in terms of this Green’s function 
as 

(2.10) 

A further simplification is achieved by expressing the solution for finite PCclet 
number in terms of that for infinite Piclet number. By inspection of (2.8), the 
relationship between these two functions in transform space is 

G(r, k, s; ro) = G&, k, s + k2PP2;  yo), (2.11) 

where G ,  is the infinite-P Green’s function (i.e. the solution obtained by neglecting 
axial molecular diffusion in (2.4)). Inverting, we find from elementary properties of 
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the transforms that 

Gm(r, z - P-k ,  t ;  ro) exp (-g) du. (2.12) 
1 

G(r, z ,  t ;  ro) = ~ 

For the remainder of this section we restrict our attention to the case of infinite 
Piclet number. From (2.Q (2.9), the governing equation for G,(r, k, s; ro) is 

v,’G, - (s + ikv(r)) G, = -nd(r - YO). (2.13) 

In order to invert the Fourier transform, we can use this equation to investigate the 
behaviour at the poles of G, in the complex k-plane. If there is a pole at k = k,, 
by definition G, is asymptotically proportional to (k - kJ1, and by inspection of 
(2.13), at leading order it satisfies a homogeneous version of the governing equation, 
with k set equal to k,, and is subject to a boundary condition of the form (2.5). 
Now for each real value of s, non-trivial solutions of this governing equation exist 
for a sequence of values of k on the imaginary axis (with Im(k) 2 0 provided s 2 0). 
We shall denote these eigenvalues, at which the poles of G, lie, by i/,(s), and the 
corresponding solutions of the homogeneous problem by fn(r; s), so the governing 
equations are written 

V:fn - (S - env(r)) fn = 0, (2.14) 

for n = 0,1,2,. . .. Since (2.14) is homogeneous, the normalization of fn is arbitrary, 
but in the calculations below for Poiseuille flow, for definiteness we shall require fn 
to be equal to unity on the axis of the tube. 

To evaluate its residues at k = i/,(s), we express G, as the sum of the leading term 
just discussed and a remainder term p,: 

(2.15) 

where C, is the coefficient we wish to determine. Substituting (2.15) into (2.13), we 
find that the governing equation for p n  is 

vy2p, - (s - /,v(r)) p n  = iC,v(r)fn - n8(r - yo). (2.16) 

Now applying Green’s theorem to the functions f, and p n  and using the governing 
equations (2.14) and (2.16), together with the boundary conditions of the form (2.5) 
which apply to both functions, we obtain 

(2.17) 

in which r’ denotes the transverse integration variable and dA’ the corresponding area 
element. With the resulting expression for C,, (2.15) shows the asymptotic behaviour 
near the pole to be 

(2.18) 

as k --+ i/,(s). From this equation the residues can be deduced, and the Fourier 
transform inverted, to give an exact expression for the Laplace transform of the 
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Green's function: 

C .  G.  Phillips and S .  R. Kaye 

We could continue by inverting the Laplace transform numerically. Instead, in the 
remainder of the paper we use (2.19) to derive asymptotic results by assuming z 
is large: first for the temporal moments of the concentration distribution (§3), and 
secondly for an asymptotic approximation for the time-variation of concentration at 
a fixed position (@4,5). 

3. Temporal moments of concentration 
Many previous workers have characterized the development of dispersion by cal- 

culating the axial moments of the concentration distribution as functions of time. 
However, it is the temporal variation of concentration at a fixed position which is 
more frequently measured experimentally. We therefore present in this section some 
asymptotic results for the temporal moments of concentration when the dimensionless 
axial distance z is large. 

3.1. Relationship between finite-P and infinite-P moments 
For the axial moments, as can easily be shown from (2.11), the effect of axial molecular 
diffusion can be restored by convolving the infinite-P solution with a Gaussian that 
represents the purely diffusive solution. As a result, the relationships between finite- 
P and infinite-P axial moments are very simple (for comparison, they are given in 
equation (A 1)). The corresponding relationships for the temporal moments are rather 
more complicated, but may be derived as follows. The ith temporal moment (relative 
to t = 0) of the tracer concentration G(r,z, t;ro) is given in terms of the Laplace 
transform 9 G  by 

mi(r,z;ro) = 1 a! t'G(r,z,t;vo)dt = (-l)ipIs_o. d i ( 9 G )  
as1 

From (2.1 l),  we find that differentiation of the double transform with respect to P-2  
is equivalent to applying the operator k2d/ds .  From basic properties of the Fourier 
transform, therefore, differentiation of the Laplace transform 2 G  with respect to P2 
is equivalent to the application of -a3/az2 as. So (3.1) implies that 

In order to make further progress it is necessary to neglect contributions to the 
moments corresponding to the n 2 1 terms in (2.19), which decay exponentially as 
z + 00, and to make some assumptions about the z-dependence of the remaining 
contributions in the infinite-P case. We confine our attention to situations where (as 
in Taylor dispersion) for large z the moments of the temporal distribution are close 
to those of a Gaussian with mean z and variance proportional to z (in the sense 
that the ith moment about the mean differs from the Gaussian value by an o(z'/*) 
quantity). We also assume that the non-decaying contributions to the moments about 
the mean are polynomial in z. With these assumptions, using (3.1) to express the 
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Fourier transforms of the mi formally as Taylor series in P - 2 ,  then inverting and 
using (3.2), we obtain 

(3.3) 

as z + 00, where the error term is in fact exponentially small. This equation implies 
that mi depends on the infinite-P moments up to the 2ith. However, if the relationship 
is re-formulated in terms of moments about the mean rather than about t = 0 we 
find that the ith finite-P moment depends only on the first i infinite-P moments. In 
this way, after some manipulation we obtain the finite-P temporal mean p, variance 
o2 and third central moment v 3  in terms of their infinite-P counterparts: 

( 3 . 4 ~ )  

(3.4b) 

p = p, + 2 F 2  + o( l), 

2 2  
0 = 0, + 2 r 2  

v 3  = v: + 2 r 2  30; + 3pm-0, + 3 -0, + 4-v, ( dz [,", : I2  d", .) 

as z -+ co, where once again the error terms are exponentially small. 

3.2. Infinite-P moments for Poiseuille flow 
The temporal moments for infinite P have been given in this approximation by Smith 
(1984) for a more general problem in which the cross-section and flow field can vary 
with z. In the z-independent case we are considering, the temporal moments can 
be found very easily from (2.14) by a regular, small-s perturbation calculation of 
series solutions for the eigenvalues /, and eigenfunctions f,. The results follow by 
substitution into (2.19) and use of (3.1). 

As an example we give the mean and the next two central moments of the temporal 
distribution for the special case of Poiseuille flow, confining ourselves as above to 
the non-decaying contributions, which correspond to 8,. (Smith's result for the third 
moment is thereby slightly extended, to include the next term, which is independent 
of z but dependent on r and yo.) We express 80 and f o  as power series in s: 

3 3 

/o(s) = C / o j s j  + 0(s4), fo(r ;  s) = C foj(r)sj + o ( ~ ~ ) .  (3.5) 

Substituting these series into (2.14) we find that l o o  = 0 and f w  = 1, and that the 
resulting governing equations are 

j=O j=O 

j -  1 

which with the boundary condition (2.5) defines a simple eigenvalue problem for tOj 
and f o j .  It is therefore straightforward to solve term by term. The series solution for 
80 is found to be 

(3.7) 
3 4 80(s) = s - &s2 + j&s + O(s ), 
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and the functions foi(r) are given by 
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(3.8) 

where we have chosen a in (2.1) to be the radius of the tube, so that r = IrI is the 
distance from the axis as a fraction of the radius. Hence from (2.19) and (3.1) we 
deduce the temporal mean, variance and third central moment for the case where 
tracer is initially present at a distance TO, and is observed at a distance r ,  from the 
axis : 

fol(r) = $(r4 - 2r2), 

f02(r) = &(9rs - 40r6 + 30r4 + 24r2), 

fo3(r) = &(25r12 - 178r” + 275r8 + 300r6 - 570r4 - 120r2), 

Pa2 = z - ; - fOl(r0) - f o l k )  + 41), 

goo = z;iz - & - (fo1(ro)2 - 2fo2(ro)) - (fo1(rI2 - 2f02(r)) + 41),  
v i  = &z - 

(3.9a) 

(3.9b) 2 1  

- 2 ( ~ o I ( ~ o ) ~  - 3foi(ro)f02(ro) + 3fo3(ro)) 

-2 (fO&)’ - 3fOl(r)f02(r) + 3fo3(r)) + o(1) (3.9c) 

as z + co. The error terms are exponentially small. For an arbitrary initial transverse 
distribution, the slowest decaying mode is a non-axisymmetric one proportional to 
exp(-4.162). If the initial condition is axisymmetric, or the observed concentration 
is averaged axisymmetrically, this contribution is absent, and the slowest decaying 
mode is instead proportional to exp(-12.84~). 

Equation (3.9) gives the temporal moments of the Green’s function G,. Since 
the problem is linear, the superposition principle expressed by (2.10) allows us to 
evaluate straightforwardly the temporal moments, for an arbitrary initial distribution 
over the cross-section z = 0, and an arbitrary transverse weighting of the observed 
concentration. These are obtained by replacing each of the functions foi(ro) wherever 
it appears in (3.9) by a cross-sectional average, weighted by the initial distribution, 
and likewise each fo i ( r )  by a cross-sectional average, weighted by the transverse 
distribution of sampling. (Note that this is not the same as obtaining weighted 
averages of the nonlinear combinations of foi(ro) and foi(r) that occur in (3.9)!) As 
(2.10) implies, a second stage of averaging with respect to z allows the moments to 
be calculated for an arbitrary initial radial and axial distribution. 

The most commonly considered initial condition is a uniform distribution of tracer 
over the cross-section at z = 0, with a density per unit cross-sectional area equal to 1. 
In this case, for an area-weighted average of the observed concentration, we obtain 
the moments, denoted by a subscript a, 

3ioz - + o(1) (3.10~-c) 
as z + co. Another average which has sometimes been considered is the flow-weighted 
(or ‘cup-mixed’) average. In the infinite-P case, since axial diffusion is negligible, the 
flow-weighted average of concentration is directly proportional to the axial flux of 
tracer. For the same initial condition, the moments of this average, denoted by a 
subscript f ,  are 

3 
pa2a = z + & + 0(1), O& = $2 - &j + 0(1), va2, = - 

1 2 1 23 1367 
Pa2f = z + 48 + 411, Oaf = z;iz - 11520 + o(l), V i f  = &z - 3870720 + 41) (3.110-c) 

as z + 00. The corresponding spatial moments are given for comparison in (A6)- 

In $6.1 below we derive from these results the moments in dimensional form, when 
the Pklet number is finite. As discussed there, the naive calculation of temporal 

(A 8~-c). 
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moments using Taylor's Gaussian approximation (Levenspiel & Smith 1957) fails to 
predict the correct behaviour for vAa (giving instead the spurious value &z + O(1)). 
This discrepancy was discussed by Chatwin (1980), who showed that the skewness 
resulting from the time-evolution of the Gaussian as it passes the measurement point 
is of the same order as the skewness of the axial distribution, which is omitted in 
the naive approach. The latter is positive in the axial sense, and therefore makes 
a negative contribution to the temporal skewness, but this is outweighed by the 
larger, positive contribution due to time evolution. (In Chatwin's equation (20), for 
Poiseuille flow the constant p may be evaluated by comparison with his previous 
(1970) asymptotic solution as & 2, but the sign of the second term representing 
axial skewness should be reversed. .i Because the standard deviation is asymptotically 
proportional to z112, the coefficient of skewness vA/oi tends to zero as z increases, 
consistent with the approach to a Gaussian profile. 

4. Asymptotic approximation for the temporal concentration variation for 
large z 

We now return to the case where the cross-section of the tube and the axial flow 
profile are arbitrary, and seek a large-z asymptotic approximation for the Green's 
function Goo(r,z,t;rO). It is necessary also to stipulate the behaviour of t as z tends 
to infinity. Viewed as a function of time, Taylor's (1953) Gaussian approximation is 
asymptotically valid provided z-'I2(t - z )  is of order unity as z -+ 00. Instead, we seek 
an approximation which is uniformly valid over the whole range of t, by defining a 
rescaled version of t ,  

z = z-'(t - z ) ,  (4.1) 
and considering z to be fixed as z -+ 00. (In the Taylor rtgime, this variable is 
asymptotically small, of order z-l12.) From (2.19), in terms of z, the Green's function 
is given by 

in which 

(4.3) 
nfn(r0 ; s)f f l(r;  s) 

F,(ro,r;s) = 
Lo(r!) f , , (r ' ;  s ) ~  dA' 

and the %?, are suitably chosen contours of integration for the inversion of the 
Laplace transform. Investigation of the behaviour of F,, and t, in the complex s- 
plane (Appendix B) shows that when z is large the leading-order solution (with errors 
exponentially small in z) is obtained from the first term of the sum in (4.2), with the 
contour q0 chosen to pass through the saddle point of the exponent. This lies on the 
real axis at the value s = sT satisfying 

a;(&) - 1 = z. (4.4) 

With this choice of contour the dominant contributions to the integral arise from a 
small neighbourhood of s = s,, of size z - ~ ' ~ ,  so by rescaling the integration variable as 
z'12(s - sr) ,  expanding FO and t o  locally in Taylor series and evaluating the resulting 



422 

integrals we find straightforwardly that 

C. G. Phillips and S. R. Kaye 

as z + 03, in which the (positive) constant K is given by 

K = +b’(O), (4.6) 

and the functions 4, a and 
s-derivatives, all evaluated at s = s,, by 

are defined in terms of Fo(~O,r ; s ) ,  /o(s) and their 

(75 = [ l o  - sz - s] I , 
s=s, 

a =  [ ( y 2 F o ]  I , 
s=s, 

Vb’l 

(4 .7~)  

(4.7b) 

in which the prime denotes differentiation with respect to s. 
Apart from the explicit appearance of z in (4.5), the Green’s function depends on 

the rescaled time z and transverse position through the three functions (75(z), a(ro, r, z) 
and P(r0, Y, z), which depend on the cross-sectional geometry and flow field, and in 
general must be determined by numerical solution of (2.14) and its s-derivatives. 
Since the problem is linear, the superposition principle expressed by (2.10) allows us 
to deduce from (4.5) the solution for an arbitrary initial distribution over the cross- 
section z = 0, and an arbitrary weighted integral of the measured concentration, by 
evaluating appropriately weighted cross-sectional integrals of the Green’s function 
with respect to ro and Y. Now the general solution depends on ro and r only through 
a and p, and each of these depends linearly on Fo. In turn, by inspection of (4.3), 
Fo depends linearly on each of fO(r0;s) and fo ( r ; s )  (and there is symmetry between 
the initial and final positions yo and r) .  It follows that the required integrals can be 
obtained simply by replacing fo(v0 ; s) in (4.3) with a cross-sectional average weighted 
by the initial transverse distribution, and f o ( r ; s )  by an average using the same 
weighting that is applied to the measured concentration. The resulting approximation 
for the concentration can be expressed as a function of z and t, in terms of three 
functions of z alone, namely +(z) and the appropriate cross-sectional integrals of a 
and p. Finally, as (2.10) shows, the solution corresponding to an arbitrary initial radial 
and axial distribution can be evaluated by means of a second stage of integration 
with respect to z. 

As mentioned above, the Gaussian approximation due to Taylor (1953) is applicable 
in the central region where z is small, of order z-’ /~.  Substituting a quadratic small-s, 
approximation for to into (4.4) and (4.7a), and using (4.6), we find that 4 - +K-’T’. 

Since, also from (4.6), ISb’l + 2~ and, from (3.5), FO --+ 1 as s -+ 0, we find also that 
a -+ 1 as z + 0. Combining these results we recover from (4.5) the leading-order 
solution 

for t - z = O(Z’ /~)  as z -+ 00. Since z - t in this limit, this Gaussian distribution is 
at leading order the temporal equivalent of Taylor’s translating, dispersing Gaussian 
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axial concentration distribution. The constant K is to be identified with the dimen- 
sionless value of the dispersion coefficient (which in dimensional terms is x P 2 D ) .  
The departures from the Gaussian form (small in this region) are represented by the 
difference of 4 from its leading quadratic term ;rc-'z2, the difference of a from unity, 
and the presence of p. It is straightforward to calculate series approximations for 
4, a and p when z is small, and so to improve the approximation (4.8). Note that 
including higher powers of z in the series for 4 in the exponent actually enlarges the 
region of asymptotic validity: including powers up to z" means the approximation 
remains asymptotic until t - z is comparable with zl-'/". This is in contrast to pre- 
vious improvements of Taylor's approximation (Chatwin 1970; Smith 1985; Stokes 
& Barton, 1990), which leave the exponential unchanged, and so remain limited to 
t - z = O ( Z ~ / ~ ) ,  as discussed in $5.1. 

5. The development of dispersion in Poiseuille flow 
We now apply the general solution derived in $4 to the particular case of Poiseuille 

flow. It follows immediately from (3.7) and (4.6) that the constant K appearing in 
(4.5) is given by 

,EL 48. (5.1) 
As discussed above, this is the dimensionless value of Taylor's (1953) dispersion 
coefficient. 

In the remainder of the section we consider departures from the temporal version 
of Taylor's approximation, (4.8), during the development of dispersion. First we 
give asymptotic approximations for the functions 4, a and p, applicable: (i) in the 
central region where z << 1; (ii) near the beginning of the transient (which is found 
to correspond to z + << 1) and (iii) in the tail, where z >> 1. We then show exact 
numerical results for 4, a and p and the form of the asymptotic approximation (4.5) 
for the temporal concentration distribution at particular values of z. 

5.1. Behaviour for  small z 

Series approximations when z is small can be obtained by applying (3.7) in (4.4) and 
then using (4.3) and (4.7). The results are 

+(z) = 12~2 - yz3 + g z 4  + 0 ( ~ 5 ) ,  ( 5 . 2 ~ )  

4 y o , y , z )  = 1 - [g +24(fo1(r)+fo1(ro))] 7 

+ [% + 576 ($Ol(Y) + ffodro) + fol(r)fol(ro) 

+f02(r) + fo2(ro))] T 2  + 0(z3) ,  

-24 (fol(r)fol(ro) + fO2k) + f o 2 ( r o ) )  + O(z), 

(5.2b) 

P ( y o , y , z )  = -% - $ (folk) +fol(ro)) 
( 5 . 2 ~ )  

in which the functions foi, defined by (3.8), are the same as those appearing in 
equations (3.9) for the temporal moments. These results for a and p express the 
dependence of G ,  on the initial position ro and the sampling position r ,  and are 
consequently rather unwieldy. For specified initial conditions and cross-sectionally 
averaged concentration, however, they are much simpler. The most commonly 
considered initial condition is a uniform distribution across the cross-section z = 0. 



424 C. G. Phillips and S .  R. Kaye 

with a cross-sectional density per unit area equal to 1; to find the corresponding 
form of (5.2), the f o i ( ro )  must be replaced by their (area-weighted) cross-sectional 
averages. If, in addition, we consider the area-weighted cross-sectional average of the 
observed concentration, denoted by (. . .), the f o i ( r )  in (5.2) must be replaced similarly, 
we obtain 

(a) (z)  = 1 + kz + +y + 0 ( ~ 3 ) ,  ( P ) ( ~ )  = -% + o ( ~ ) .  (5.3) 

The other form of sampling commonly considered is the flow-weighted (or ‘cup- 
mixed’) average. For the uniform initial cross-sectional distribution, by replacing the 
foi(r)  instead by flow-weighted cross-sectional averages, we obtain 

( va ) ( t )  = 1 - ;z + %z2 + 0 ( ~ 3 ) ,  ( u p ) ( z )  = -% + o(+ (5.4) 

In $6.2, these equations are used to derive in dimensional form an approximation for 
the tracer concentration near its peak. 

5.2. Behaviour near z = -+ 
In the absence of axial molecular diffusion, the minimum time of arrival of tracer 
a distance z downstream is determined by the peak value of axial velocity, which 
in Poiseuille flow occurs on the axis and is equal to twice the mean axial velocity. 
So in dimensionless terms the onset of the observed concentration transient occurs 
at t = i z ,  i.e. at z = -;, and the first appearance of tracer is at the axis. The 
leading-order behaviour just after the onset is expressed by the asymptotic forms of 
CI and 4 as z -+ -;. In Appendix C, $C.l we outline the derivation of the asymptotic 
solution of (2.14) in the limit s --+ co, which is found to correspond to z -+ -;. This 
gives 

(5.5) 

as z + -+ 0, in which the errors are algebraically smaller than the second term. 
The function fo(r, sT), expressing the leading-order radial variation of concentration, 
is by definition equal to unity at the axis, but decays rapidly away from r = 0. In 
Appendix C, $C.l it is shown that 

the relative error is exponentially small in (5.6a), but only algebraically small in (5.6b). 
In terms of this function, 

with an exponentially small relative error. (An expression for P(ro,r,z)  can also be 
found using (4.7c), but it is rather cumbersome, and takes different forms in the two 
regions.) 

For the cross-sectionally uniform initial condition considered above, simpler ap- 
proximations for the temporal concentration variation follow. Integrating (5.7) with 
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respect to ro and using (4.5) gives 

By carrying out further integrations with respect to r,  we obtain the area- and 
flow-weighted cross-sectional averages of concentration : 

as z + -;. As is true throughout this section, z is assumed to be held fixed as z --+ co, 
and (5.8) and (5.9) are approximations appropriate when in addition z + is small. 
In practice these approximations are subject to two sources of error. The small- 
(z + ;) approximations (5.5), (5.7) involve exponentially small errors. In addition the 
large-z approximation involves errors that are algebraically small in z, namely z-'B 
and higher-order terms. Estimation of p as z + -; shows that for the averaged 
concentrations (5.9a, b), and on the axis r = 0, the relative size of the correction term 
is z-'(z + ;)2 or less, so that it remains small (Appendix C, 6C.l). However, for 
other values of r,  for a given value of z, (5.8) can break down when z + becomes 
sufficiently small, so that in practice, the closer one comes to the onset, the larger 
z must be for the approximation to remain accurate. It is interesting to note that 
if 4 is set equal to the leading term in (5.5), the asymptotic approximation ( 5 . 9 ~ )  
(valid when z >> 1 and z + t << 1 )  is identical with the first term of Lighthill's (1966) 
solution for (c) near the 'leading edge' of the tracer distribution at short times (valid, 
in our notation, when z and z + are both small and are comparable with each 
other). 

5.3. Behauiour as z + co 
For the long-time behaviour, i.e. the limit z + co, we seek an asymptotic approxima- 
tion for lo and f o  in the limit s --+ -co. The derivation is outlined in Appendix C, 
5C.2, and leads to 

f0(s) = - A ~ ( - s ) ~ / ~  - A,(-s) - A ~ ( - - s ) ' / ~  - l3 + o(-s)-' /~,  (5.10) 

where the Ai are constants whose values are given in (C 17). It can then be deduced 
from (5.10) that the asymptotic form of the exponent function 4(z) for large z is 

4 ( ~ )  = 4 0 ~ 3  + 4 1 ~ 2  + 422 + 43 + o(z-'), (5.11) 

where the constants +i are given in (C 18). 
The function fo(r, s,) describing the radial variation of concentration is, by defi- 

nition, of order unity near the axis, but rises to become exponentially larger at the 
wall. The solution takes a different form in each of three radial regions, and can be 
expressed as 

for r = 0(2-~/~),  

for intermediate r,  

for 1 - r = O(z-'), 

(5.12) 

31/2;11/3 
---A- exp (O(1, z))Ai (2-4/3;1h213 { iz(1 - r )  - 1 } )  21/3z1/2 I 
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in which 10 denotes a modified Bessel function, Ai the Airy function, and 
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2 
Q(r, z) = -2;' (r(1 - r2)1/2 + sin-' r )  z3/' 

3 J 3  

+-Ail 1 ((2 - A l ) r ( ~  - r2)1/2 + (1 - l1)sin-' r )  T ' / ~ .  (5.13) 
2 J 3  

In terms of the function fo,  we find that 

(5.14) 

where Qo is a constant given by (C22). 
For the special case where tracer is initially uniformly distributed over the cross- 

section with a density per unit area of 1, the cross-sectionally averaged concentration 
in the tail is 

(5.15) 

in which Q1 is a constant given by (C23a). For the same initial conditions, the 
flow-weighted version is 

(5.16) 

and will not 
in which Q2 is a constant given by (C23b). 

be given here. In this case, however, examination of the limiting form of p as z -+ co 
shows that it is the same order as CI, so that the leading term of (4.5) remains valid 
throughout the tail. 

The z + co approximation (5.11)-(5.16) may be compared with another short-time 
approximation for (c), for the 'trailing edge' of the axial tracer distribution, due 
to Stokes & Barton (1990). This is valid when z is comparable with t3/' and t is 
small, and consists of a series solution (their (28)), of which all but the first term are 
exponentially small in our large-z rkgime. The first term is related to our solution, 
but the relationship is not as close as for the 'leading-edge' approximation discussed 
in $5.2. The term, if the large-z limit is taken, contains an exponential factor equal to 
exp(-&zz3) in our notation. But the remaining terms of (5.11), which would be small 
in the short-time rkgime, are absent, and the factors multiplying the exponentials do 
not seem to be equivalent. 

As in $5.2, the correction function p takes a rather complicated form, 

5.4. Numerical results 
In this subsection we illustrate the behaviour of the asymptotic approximation (4.5) 
for Poiseuille flow, and compare it with both the numerical solutions of Shankar 
& Lenhoff (1991) and the simpler approximations for particular ranges of z just 
presented. First we show computed results for the functions 4, CI and p, which are 
necessary to evaluate the asymptotic approximation (4.9, together with fo, which 
expresses the radial variation of concentration. We confine ourselves to values of z 
up to unity, since in practice when z is sufficiently large for the approximation to be 
accurate, the concentration is very small beyond this point. 

In figure 1 the function 4, which appears in the exponent of (4.5), is shown. Near 
the origin, 4 is quadratic at leading order, but away from the origin it exhibits a 
skewed form, tending to infinity both at the onset of the transient at z + -; and 
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FIGURE 1. The function 4 that appears in the exponent of (43, as a function of z. In addition 
to the exact curve, obtained numerically ~ we show two asymptotic approximations: the 
three-term series (5.2a) valid for small z ---; the four-term approximation (5.11) valid for large 
z -. . . . . .. NB On the scale shown, the two-term approximation (53, valid when z is close to 
-;, is indistinguishable from the exact curve up to about z = -0.1, and has not been shown. 

(as a cubic) as z + 00, so that the concentration must tend to zero in both these 
limits. At the leading order, the approximation (4.5) for a fixed value of z depends 
on z through a multiplicative factor zr1l2, and through the exponential exp(-z$(z)). 
The form of the latter means that, as z is increased, the region near z = 0 for which 
the concentration is significant is progressively reduced. Finally, when z is large, the 
quadratic approximation for 4 is appropriate and the expression (4.8), corresponding 
to Taylor's solution, is obtained. 

For comparison with the exact curve, figure 1 also shows small-z (quartic) and 
large-z (cubic) asymptotic approximations for 4. The approximation (5 .5 )  for z + -; 
is not shown because it lies too close to the exact curve to be seen clearly (within 4% 
for z < -0.14); unfortunately its accuracy seems to be somewhat fortuitous, as the 
corresponding approximations for CI and f i  break down far earlier. 

Since the exponential in (4.5) does not depend on either the distance ro from 
the axis at which tracer is released or the distance r at which concentration is 
measured, at leading order the dependence on both ro and r is expressed by CI, which 
is proportional to the product fo(ro;s,)fo(r;s,). In figure 2 this radial dependence is 
illustrated, for several values of z, by showing a version of fo(r;s,), rescaled so that 
its (area-weighted) cross-sectional average is unity, as a function of r. Early in the 
transient near z = -;, the higher velocities near the axis mean that tracer lies mainly 
in the neighbourhood of r = 0. Subsequently it becomes more uniform, until in the 
Taylor rkgime when z is small (of order z-'/*), the radial variation is also small and 
of the same order. Conversely, at longer times, the tracer remaining is found mostly 
near the wall where flow is slowest. 

For the remainder of this subsection we shall assume that tracer is initially dis- 
tributed uniformly over the cross-section of the tube at z = 0 with cross-sectional 
density per unit area equal to 1, so that all quantities are (area-weighted) integrals 
with respect to ro. Four different weightings will be used for integration with respect 
to the observation position r ,  so that the results express an area-weighted average, 
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FIGURE 2. Leading-order variation of concentration with radius r between the axis ( r  = 0) and the 
wall ( r  = l), normalized so that the (area-weighted) cross-sectional average is unity. The radial 
distribution is shown for different values of the dimensionless time: -. . .-. . . , = -0.45; . . . . . ., 

, z = 1 ;  ---, z = 2. = 0; -.-.- z = -0.4; -, 

a flow-weighted average, concentration on the axis and concentration at the wall. 
However, in view of the symmetry of (4.5) between TO and Y, it should be noted that 
the results shown can equally be viewed as the area-weighted observations resulting 
from non-uniform initial distributions. 

For the function a, which multiplies the exponential function in ( 4 3  figure 3 
shows the four weighted integrals, just referred to, as a function of z. For clarity, the 
simpler approximations for particular ranges of z are not shown; they are, however, 
incorporated in the results for the concentration profile shown in figure 5 below. The 
behaviour shown is consistent with that illustrated in figure 2, in that, for z c 0, a 
decreases monotonically from the axis to the wall, and for z > 0 the opposite is true. 
The flow weighting gives preference to the region near the axis, and so gives a larger 
value of a than the area weighting. (This behaviour will be somewhat modified by 
the p term and higher-order corrections.) Note that in both the limits z + -+ and 
z -+ co, some of these integrals tend to infinity and some to zero; mathematically, it 
is the behaviour of $, not a, which forces the concentration to tend to zero. 

The behaviour of p, shown in figure 4, is rather more complicated. All the curves 
begin from zero at z = -+, and after about z = -0.2, the values of /3 are small and 
vary only gradually: for this reason the figure shows the curves only up to z = 0. In 
contrast, soon after the onset of the transient, the curves exhibit rapid variation: the 
area-weighted and flow-weighted averages both show sharp maxima, the value at the 
wall a sharp minimum, and the value on the axis a maximum quickly followed by 
a minimum. Note, however, that the absolute values of the functions remain fairly 
small, and it is only for quite small values of z that they are important, both because 
p is multiplied by z-I in (4.5) and because as z increases the neighbourhood of z = 0 
over which the concentration is significant decreases. 

As an example of how a, /3 and 4 are combined using (4.5) to give an asymptotic 
approximation for the variation of concentration with time at a fixed axial position, 
we show in figure 5 the flow-weighted average of concentration at z = 0.3. The 
present approximate solution is compared with the numerical results of Shankar 
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FIGURE 3. Cross-sectional integrals of the leading-order coefficient a, appearing in (4.5), as a function 
of z. The functions are integrated with respect to ro as appropriate when the tracer substance is 
initially distributed uniformly over the cross-section. Weighted integrals with respect to r are 
then obtained, corresponding to: -..-, measurement on the axis r = 0; ~ a flow-weighted 
cross-sectional average; . . . . . ., an area-weighted cross-sectional average; ---, measurement at the 
wall r = 1. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 
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FIGURE 4. Cross-sectional integrals of the leading-order coefficient b, appearing in (4.5), as a function 
of z. The functions are integrated with respect to ro as appropriate when the tracer substance is 
initially distributed uniformly over the cross-section. Weighted integrals with respect to r are 
then obtained, corresponding to: -..-. ., measurement on the axis r = 0; -, a flow-weighted 
cross-sectional average; . . . . . ., an area-weighted cross-sectional average; ---, measurement at the 
wall r = 1. Note that the time range is restricted to negative values of 2.  

& Lenhoff (1991) for the same problem. Considering that the approximation is 
formally valid in the limit z + co, the agreement between the two is surprisingly 
good. In particular, the twin-peaked profile characteristic of developing Taylor 
dispersion is reproduced: the first peak occurs soon after t = 0.15 and represents 
tracer advected by rapidly moving fluid near the axis; the second occurs just before 
t = 0.3 and corresponds to slower advection with a speed close to the cross-sectional 
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FIGURE 5. The flow-weighted cross-sectional average of concentration as a function of dimensionless 
time t ,  at a dimensionless distance z = 0.3 downstream of the point of release, assuming a uniform 
initial distribution over the cross section. In addition to the numerical results due to Shankar & 
Lenhoff (1991) ( 0  0 0 )  we show the asymptotic approximation (4.5) with 4, CI and 0 computed 
exactly (-). Also shown are the simpler approximations: ---, (i) leading-order version of (4.5), 
with p omitted; . . . . . . ,  (ii) approximation for z + -;, obtained from (5.5), (5.9b) and (C7); -.-.-, 
(iii) small-z approximation, obtained from ( 5 . 2 ~ ~ )  and (5.4); -. . . . -. . ., (iv) large-z approximation, 
obtained from (5.11) and (5.16). 
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FIGURE 6. The flow-weighted cross-sectional average of concentration as a function of dimensionless 
time t ,  at several values of the dimensionless downstream distance z ,  assuming a uniform initial 
distribution over the cross-section. The asymptotic approximation (4.5) is shown together with 
numerical results due to Shankar & Lenhoff (1991) ( 0  0 0 ) :  -, z = 0.2; ---, z = 0.3; ----, 
z = 0.4. - .  .- .  .-, z = 0.6. 

average. At larger distances, of course, the second peak becomes dominant as 
Taylor dispersion develops. The main deficiency of the asymptotic approximation 
is that the initial peak is predicted to be too narrow, and its height is somewhat 
underestimated. (Comparisons with numerical results for other values of z are given 
below, in figure 6.) 
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For further comparison, figure 5 also shows several simpler approximations. The 
leading-order version of (4.5), with the p term omitted, is shown. This omission 
results in the disappearance of the initial peak (although a residual ‘shoulder’ is still 
evident), and a slight compensatory increase of the second peak. Curves based on 
asymptotic approximations for 4, CI and /J are also shown. While each describes the 
curve within a certain range, at this value of z their deficiencies are quite serious. 
The small-z approximation describes the second peak and its decline quite well, but 
wholly lacks the initial peak, and predicts spurious positive concentrations before the 
onset at t = 0.15. On the other hand the initial rise, up to just before the first peak, 
is accurately described by the z -+ -; approximation, but this continues to increase 
steeply beyond the peak. The large-z approximation retains a significant error over 
the whole range shown, although beyond about t = 0.6 it is an improvement on the 
small-z curve. 

The evolution of the temporal profile with downstream distance is illustrated in 
figure 6. Once again the solutions computed by Shankar & Lenhoff (1991) are shown, 
together with the full asymptotic approximation (4.5). The first curve corresponds 
to z = 0.2, and the loss of accuracy of the large-z approximation in the region of 
the initial peak is evident, with both height and sharpness being overestimated. This 
trend clearly arises from the increasing dominance of the sharp initial peak of p, 
shown in figure 4, as z is reduced (since the p contribution is multiplied by z-l 

in (4.5)). Nevertheless, over the remainder of the range of time, the asymptotic 
approximation agrees closely with the numerical values. The next two curves, for 
z = 0.3 and 0.4, show successively smaller inaccuracies in the neighbourhood of the 
initial peak, and the final one, for z = 0.6, is virtual indistinguishable from the 
numerical values. 

Finally, figure 7 compares different cross-sectional averages of the concentration, 
again at z = 0.3. These correspond to: area-weighted averaging, flow-weighted 
averaging, measurement on the axis and measurement at the wall. (As discussed above, 
these solutions can equally be viewed as the area-weighted average concentrations 
observed for different initial radial distributions, namely : a uniform distribution 
over the cross-section, a parabolic distribution, tracer concentrated on the axis and 
tracer concentrated at the wall.) At this relatively short distance downstream from 
the point of release, the radial differences in concentration are considerable, except 
in the immediate neighbourhood of t = 0.3. One aspect illustrated by these results 
is the variation of the mean transit time p,, i.e. the mean value of t associated 
with the transient. This is smallest for measurement on the axis (p, = 0.258), 
where the flow velocity has its maximum, and largest for measurement at the wall 
(pa = 0.383). Similarly the temporal variance 0; increases from 0.00608 on the 
axis to 0.0104 at the wall; as shown by (3.9)-(3.11), the absolute differences in pm 
and 0: persist even at large distances downstream, where the Gaussian form has 
developed. Another prominent feature of the undeveloped profiles shown in figure 7 
is the variation of the shape of the curve with radial position, particularly regarding 
the relative sizes of the two peaks. In fact, the second peak is absent on the axis, 
and there is no suggestion of an initial peak at the wall, where the curve appears 
far closer to the Gaussian form: in quantitative terms, we find from (3.9) that the 
coefficient of skewness vL/crL at the wall is only 0.320, compared with 0.911 on the 
axis. 

Note that at the wall the predicted concentration falls below zero for a small period 
immediately following the onset, because the negative contribution of p outweighs 
that of CI. Although the approximation is uniformly asymptotic for fixed z as z +. GO, 
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FIGURE 7. Cross-sectional integrals of the concentration as a function of dimensionless time t, at 
a dimensionless distance z = 0.3 downstream of the point of release, assuming a uniform initial 
distribution over the cross-section. We show integrals corresponding to: -. ., measurement on the 
axis r = 0; --, a flow-weighted cross-sectional average; . . . . . ., an area-weighted cross-sectional 
average; ----, measurement at the wall r = 1. 

as noted in $5.2, for small, fixed values of z the magnitude of a may tend to zero 
faster than that of p as z + -;; this does not occur, however, for the flow- or 
area-weighted averages or at r = 0. 

6. Application and discussion 
The object of this paper is twofold: (i) to consider the development of dispersion 

in shear flow by calculating characteristics of the temporal concentration variation 
at a fixed position, rather than by the more usual approach in which the spatial 
distribution is calculated at a fixed time, and (ii) to derive a uniformly valid asymptotic 
approximation for the whole of this concentration distribution, including the tails. 
The adoption of the temporal approach means that the results are more directly 
applicable to experiments in which measurements are made using a fixed sensor, and 
are also potentially useful for the treatment of dispersion in systems of tubes arranged 
sequentially, for example in bifurcating networks, where it is necessary to deduce the 
time-varying efflux out of each section from knowledge of the time-varying influx 
at the inlet. In this connection note that, when the Piclet number is infinite, the 
flow-weighted cross-sectional average of concentration is directly proportional to the 
total axial flux of tracer: it is therefore easy to express fluxes in terms of the present 
solution. The expressions derived in this paper are approximations formally valid for 
large values of the dimensionless axial distance z from the point of discharge, defined 
by (2.1). In practice, however, they are found to be reasonably accurate even for quite 
small values of this parameter. 

The general solution outlined in 543 and 4 applies directly to dispersion in a tube 
of arbitrary cross-section, with an arbitrary axial velocity profile. It is clear that the 
technique can straightforwardly be extended to include features such as transversely 
non-uniform diffusivity and exchange between phases. It may also be capable of 
extension to dispersion in more complicated systems such as spatially periodic media. 
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6.1. Application of results f o r  the temporal moments 

The first set of results presented ($3) is for the moments of the time-dependent 
concentration variation measured at a fixed axial position; these are the tempo- 
ral counterparts of the axial moments which have been in common use since the 
work of Aris (1956). For dispersion by an arbitrary flow profile within a tube of 
arbitrary cross-section, the temporal moments when the P6clet number is finite are 
given in terms of those for the infinite-P6clet-number case by (3.4). In $3.2 we give 
temporal moments, when the P6clet number is infinite, for the particular case of 
Poiseuille flow. In (3.9) the mean, variance and third moment about the mean are 
given in dimensionless form, in the case where the tracer substance is introduced 
at a (dimensional) distance aro, and measured at a (dimensional) distance ar, from 
the axis. From these equations may be deduced the moments corresponding to 
an arbitrary initial radial distribution and an arbitrary radially weighted average 
of the measured concentration. For the most commonly considered initial con- 
dition, that of a radially uniform tracer distribution, the temporal moments for 
cross-sectional and flow-weighted averages of the measured concentration are given 
by (3.10) and (3.11) respectively. When the Piclet number is infinite, the latter 
are equivalent to temporal moments of the total tracer flux passing a fixed axial 
position. 

As an illustration, we show how to recover from these equations the dimensional 
form of the flow-weighted temporal moments when the Ptclet number is finite. The 
first step is to substitute the infinite-Peclet-number moments, given by (3.11), into 
(3.4) to obtain their finite-P6clet-number counterparts. These moments are then re- 
dimensionalized by multiplication by appropriate powers of the timescale a2/D used 
for non-dimensionalization in (2.1). Finally, the dimensionless variables P and z are 
re-expressed in terms of dimensional quantities using (2.1) and (2.2). The resulting 
equations, for the dimensional mean, variance and third moments about the mean, 
are 

Mf = v;'z + DV,-2(&P2 + 2)  + . . . , (6.la) 

C; = D V t 3 ( d P 2  + 2)Z + D2Vi4( -&P4  + $ P 2  + 8) +. . . , (6.lb) 

N; = D 2 V 3  &P4 + ;P2 + 12)2  

+ D 3 V i 6 ( - = P 6  3870720 + &P4 + $ P 2  + 64) + . . . , ( 6 . 1 ~ )  

in which the error terms omitted are exponentially small in D2/V,,,a2. Although 
these results are for a particular initial transverse distribution and weighting of the 
measured concentration, in fact the terms proportional to 2 are independent of both 
these conditions (as is the final constant term in each case). 

The true temporal moments given by (6.1) can be compared with those ob- 
tained from a Taylor-type Gaussian approximation (Levenspiel & Smith 1957). The 
latter are found to give correctly the dominant, 2-dependent terms of the first 
two moments, but to fail to predict the dominant term of N j ,  proportional to 
P4Z. Although there are also some other terms in common with the true mo- 
ments, the leading constant terms of the mean and variance are also predicted 
incorrectly, so that there are relative errors of order V,,,a2/D2 for the first two 
moments. (Note, however, that if the cross-sectionally averaged, rather than the 
flow-weighted, moments are considered, the Gaussian approximation does predict M f  
correctly.) 
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6.2. Application of the asymptotic approximation for  tracer concentration 

The principal result presented in this paper is a uniformly asymptotic approximation 
for the time-dependent tracer concentration measured at a fixed axial position. In 
$4, for an arbitrary flow profile in a tube of arbitrary cross-section, we calculate a 
Green’s function, corresponding to an initial introduction of tracer at some point in 
the fluid with transverse (dimensionless) position ro, which describes the measured 
concentration with the transverse (dimensionless) position Y. The dimensionless form 
of this Green’s function G,, for infinite Peclet number, is given by (4.5). In this 
equation, z and z are dimensionless axial and time variables (given in terms of 
dimensional quantities by (6.4) below). In general, the functions 4, a and p, and the 
parameter IC, must be evaluated by numerical calculation, by following a procedure 
which can be summarized in four steps as follows. The first stage is to solve the 
two-dimensional reaction-diffusion-type equation (2.14) over the cross-section of the 
tube, with a boundary condition of the form (2.5) at the wall, in order to determine 
the smallest eigenvalue lo as a function of the Laplace transform variable s. Secondly, 
from the corresponding eigenfunction fo(r; s), the function Fo(r0, r ;  s) is evaluated 
using (4.3). Thirdly, the location of the saddle point in the s-plane, s,, is found by 
solution of (4.4). Finally, the quantities required for the general solution are found 
from (4.6) and (4.7), in which they are expressed as combinations of the s-derivatives 
of lo and Fo, evaluated at s = s,. The dimensional concentration may then be 
recovered from (2.1)-(2.3) as 

in units of mass per unit volume. From the Green’s function, as explained in $4, it is 
straightforward to deduce the solution for an arbitrary initial transverse distribution 
and an arbitrary transverse weighting of the measured concentration, by replacing 
the functions fo(v0 ; s) and fo(r;  s) where they appear in (4.3) by appropriate weighted 
averages. 

For Poiseuille flow, the constant K is equal to &, and numerical results are presented 
in 45.4 for 4 (figure 1) and for several weighted transverse averages of a and p 
(figures 3 and 4). (In addition, the graphs of fo(r;s,) in figure 2 show how, at leading 
order, the concentration varies over the cross-section at different times.) Using these 
results, as in figures 5-7, it is possible to evaluate the general approximation in its 
dimensionless form (4.5) for any values of z and t. As illustrated in figures 5 and 
6, the general approximation agrees reasonably closely with numerically calculated 
concentration profiles even for quite small values of z .  In particular, it reproduces 
the double-peaked profile observed at short distances, and so represents a significant 
improvement on earlier asymptotic approximations. (Significant differences between 
the asymptotic solution and the numerical results are confined to a fairly small region 
near the first peak.) Another feature of the solution for small values of z ,  illustrated 
in figure 7, is a strong dependence of the concentration on transverse position. This 
means that there is a need for caution in interpreting measurements when either the 
initial distribution or the mode of sampling is not well characterized, and in the early 
stages of development the different transversely weighted averages of concentration 
will differ significantly. Traditionally, dispersion has been studied in terms of the 
cross-sectional average of concentration, although this is rather difficult to measure 
in practice, unless by optical means. We have chosen instead to present results for 
the flow-weighted average of concentration, which when the Pkclet number is infinite 
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has a direct physical significance, being proportional to the total axial tracer flux. 
In practical applications, however, for comparison with concentration measurements 
made using a particular sampling technique, the transverse weighting should reflect 
the amounts sampled at different transverse positions. 

Although the general approximation (4.5) is required to describe the whole con- 
centration distribution, simpler approximations are available for particular ranges of 
time. In particular, the approximation for the central region, appropriate when z << 1, 
may be regarded as a refinement of Taylor's Gaussian approximation, and will be 
adequate for many purposes. This approximation is calculated for Poiseuille flow in 
$5.1, and may be straightforwardly found for other flow profiles and cross-sectional 
geometries from small-s series solutions of the type given in 93.2. As an example, 
we give here the dimensional form of this approximation when the initial tracer 
distribution is radially uniform and when the measured concentration is averaged 
using a flow weighting. This case corresponds to the approximations (5 .2~)  for 4 and 
(5.4) for the appropriate averages of CI and p. Substituting these into (4.5) and using 
(6.2), we find 

(VC) = 2 J ~ A Y D ' / ~  (I - :z + %z 87 2 - &z-'+ . . .) exp (-z(122~ - 3~ 36 3 + 4197 4 I), 
n3/2 vAI2a3z 112 

(6.3) 
in which, as in general, z and z are given in terms of dimensional quantities by 

z = DZ/Vma2, z = 2-'(VmT - 2). (6-4) 

In (6.3), the terms within the exponent are independent of both the initial tranverse 
distribution of tracer and the transverse weighting of the measured concentration. 
The other correction terms may easily be found for other conditions by using (5.2), 
in which the functions fo j ( ro)  and f o j ( r )  should be replaced by averages, weighted by 
the initial distribution and the final weighting respectively. 

By including in the exponent powers of z beyond the quadratic, this expression 
improves Taylor's Gaussian approximation and its subsequent refinements (Chatwin 
1970; Stokes & Barton 1990). The latter fail to describe the concentration distribution, 
even at leading order, beyond t'I6(- z1I6) standard deviations from the peak, which is 
the point at which the cubic term in the exponent rises to order unity. Equation (6.3), 
on the other hand, does not break down until t3/10(- z3/I0) standard deviations from 
the peak; the range of validity could be extended further by including still higher 
powers of z in the exponent. 

Another simpler version of the general result is applicable when z >> 1, and de- 
scribes the decay of the concentration at long times. The dimensional forms of 
the cross-sectional and flow-weighted averages of concentration can be obtained, as 
described above, by substituting (5.15) and (5.16) respectively into (6.2). We can 
deduce from this solution the (dimensional) time T, that elapses before the concen- 
tration drops to some very small fraction E of its peak value (in practice E must be 
O(e-DZlvma2)). At leading order, we find that T, satisfies 

(This approximation can easily be improved using (5.14)-(5.16), although the correc- 
tions depend on the initial transverse distribution and the cross-sectional weighting 
of the observed concentration.) Note that, since the large-z solution is determined 
by behaviour close to the wall, provided that the no-slip condition applies there, the 
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same scalings (though not the same multiplicative constants) will apply for tubes with 
different cross-sections and axial flow profiles. 

The true asymptotic result (6.5) can be compared with the estimate obtained using 
Taylor’s Gaussian approximation, namely 

and that obtained from the temporal Gaussian approximation (4.8), namely 

In the limit E. -+ 0, both (6.6) and (6.7) overestimate the time taken for the concen- 
tration to fall to this level. 
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Appendix A. Results for the axial distribution 
A.l. Moments of the axial distribution 

For comparison with the results for moments of the temporal concentration distri- 
bution, we give here the corresponding expressions for axial moments, which will be 
denoted by a superscript (2). Most of these have appeared before, though they have 
often been given for particular initial conditions or cross-sectional averages, first by 
Aris (1956; though note that his equations contain some errors), and later by Chatwin 
(1970), Gill & Sankarasubramanian (1970) and Smith (1981b, 1982a, 1984). 

It is easy to show that, in contrast to (3.4), the axial moments for finite and infinite 
P are linked by the simple relationships 

(A 1)  

The axial moments may be conveniently calculated by a procedure similar to that in 
@2,3, but in which the Laplace transform is inverted first, and the Fourier transform 
is expressed as a small-k series. We find 

$2) = (2) = oo + 2p-24 v(z)3 = ( z )3  P m  3 yo0 * 

where the f:) and sf) both depend on k ,  being eigensolutions and eigenvalues of the 
equation 

A small-k series solution is found, giving 

V Z ~ ? )  - (s!) + iku(r)) f f )  = 0. (A 3) 
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where the functions fk)(r) can be expressed in terms of the foi(r), defined by (3.8), as 

Substituting (A 4) into (A 2) and using the relationship between the axial moments and 
the derivatives of F G ,  at k = 0 (corresponding to (3.1) for the temporal moments), 
we find that 

&) = t + ; + f O l ( Y 0 )  + f o l k )  + 411, 
&)2 = It - 17 + 

(A 6a) 

(A 6b) 

m 24 2880 ( $fol(ro) - fol(ro)2 + 2f02(r0>) 

+ (&fodr) - fol(r)2 + 2f02(4) + 411, 

+ ( & , f o l ( ~ o )  - $ f o l ( r ~ ) ~  + 2f01(rd3 - 6fol(ro)fo2(ro) + $f02(r0) + 6fO3(rO)) 

+ (&,fol(r) - $fol(r)* + 2fol(r)3 - 6fol(r)fo2(r) + 3 0 2 ( r )  + 6f03(r)) + o(1) 

v g 3  = r 83 
480t - 75600 

(A 6c) 

as t + co. When the initial distribution over the cross-section is uniform, the area- 
weighted cross-sectionally averaged spatial moments, denoted by a subscript a, are 

(A 7a-c) p:; = t, Crg.2 = kt - & + o(1) , V 2 L 3  = At- 17 53760 +o(l)  
and the flow-weighted averaged moments, denoted by a subscript f ,  are 
p:; = t+  $ +o(l), Crzy = 1 2 4 t - m + 0 ( 1 ~  29 v ~ ~ = & j t - ~ + o ( l ) .  1691 ( ~ 8 a - c )  

A.2. Asymptotic approximation for the axial distribution 
It is easily shown using (4.1) that an equivalent version of (4.5) for the axial distribution 
is 

in the limit t + co with the rescaled axial distance [ fixed, where 

= t-'(z - t), (A 10) 
and the functions in (A9) are defined in terms of their temporal counterparts by 

P(0 = (1 + 0 4 ( 4 1  + o- l c )  , (A 1 la) 

(A l l b )  

(A 1 lc) 

A number of expressions for these functions can be deduced from the results given in 
the main body of the paper. Here we give the asymptotic approximations valid near 
the edges of the distribution. 

For the 'leading' tail, we find from (5.9) that as ( --+ 1, the area- and flow-weighted 
average concentrations are given by 

dZ)(ro, r, i) = (1 + 5)- 1/2 a (ro, r, -(I + i>-'r) , 

P(z)(ro,r, 0 = (1 + P ( Y o , h  4 1  + r>-'r) . 

23/2e-@)(c) 

(1 + O((1 - 0, t-71 - 0')) 3 (A 12) (nt)'/2(1 - [)1/2 

p([ )  = 2( 1 - 0 - l  + o( 1). 

( C k ,  t )  +C)(Z, t )  = 

in which we deduce from (5.5) that 

(A 13) 
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For the ‘trailing’ tail, in the limit [ + -1, we find from (5.15) that the (area- 
weighted) cross-sectional average concentration is 

and from (5.16) that the flow-weighted average concentration is 

in which from (5.11) we have 

in which the coefficients are given by 

where al, is the first (negative) root of Ai’. 

Appendix B. Choice of the integration contours qn 
In (4.2), the contours of integration %‘, for inversion of the Laplace transform 

are required to pass to the right of the singularities of the respective integrands. 
Numerical investigation of the behaviour, in the upper half-plane Im(s) > 0, of the 
eigenvalues /t)(s) corresponding to axisymmetric solutions of (2.14) for Poiseuille 
flow shows that @(s) (which is smaller than all the non-axisymmetric eigenvalues, 
and so is identical with / o ( s )  in (4.2)) has a branch point at s = bl, @(s) has branch 
points at s = bl and bz, &’ (S)  has branch points at s = b2 and b3, and so on. Each of 
these branch points is locally of the square-root type, and b, links /!?,(s) and /t)(s). 
(In general the location of the branch points will depend on the cross-section of the 
tube and the form of the axial flow profile.) For Poiseuille flow we find numerically 
that 

(B 1) 

Note that the real parts are increasing, so it appears that it will be impossible to 
choose a common integration contour %? which lies to the right of all the b,. But such 
a contour can be chosen for any truncated version of the series, no matter how many 
terms it contains. 

On the real s-axis, t o ( s )  is by definition the smallest eigenvalue, so that the first 
term dominates the series solution (2.19). The corresponding exponent has a unique 
saddle point at s = s, given by (4.4), and it is tempting to try to invert the first term 
individually by deforming the integration contour so that it passes through s,. But 
this may lie to the left of the branch point at s = bl,  which for some values of z would 
give rise to a larger contribution than the saddle point. However, if higher terms of 
the series are added, we can use the structure of the df ) (s )  in the complex plane to 
deform the integration contours so as to make it clear that such contributions from 
the branch points cancel, leaving a dominant contribution from the saddle point. 

For illustration, take a version of (4.2) truncated after three terms, and consider 
a situation in which s, lies to the left of the branch points b,. Choose initially an 

bl G -3.629 + 14.012i, b2 = -0.078 + 32.2401, b3 m 5.841 + 52.146i. 
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Vo W?’ W?’ 

FIGURE 8. Schematic illustration of the choice of integration contours %$) (n  = 0, 1 and 2) ,  which 
are deformed to pass around the branch points b, ( n  = 1, 2 and 3). 

integration contour passing to the right of bl, b2 and b3, and then for each term, deform 
the contour to the left so as to pass through s = s,, leaving excursions around the 
branch points encountered during deformation. The result is as shown schematically 
in figure 8, with the contours VO and Vy) passing around bl, the contours %‘y) and 
%?f) passing around b2, and V f )  alone passing around b3. Careful consideration shows 
that the integrands are equal on the segment of V0 approaching bl and the segment 
of %‘y) contour leaving it, so the contributions of these two segments cancel each 
other. The same is true of the remaining two segments passing around bl,  and of 
the four segments passing around b2. Thus, apart from contributions associated with 
b3 arising from truncation, the presence of the branch points has no effect on the 
integral. By including enough terms of the series, the truncation terms can be made 
asymptotically smaller than the contribution from the neighbourhood of the saddle 
point, and the solution of $4 follows. 

Appendix C. Asymptotic forms of the tails 
C.l. Asymptotic solution for  z --+ -; 

We require asymptotic approximations for f o  and t o  in the limit s + 00. From (2.14), 
for Poiseuille flow the governing equation is 

This equation, and the condition fo(0) = 1, are satisfied by 

(0) fo ( r ; s )  = exp ( - ;YlW2)  , 
t ! ’ ( s )  = ;s + y1(s), 
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in which 

This leaves the condition at r = 1 unsatisfied. Examination of ( C l )  shows that this 
condition influences the form of fo over the small lengthscale s-’/*. Consequently, in 
a thin layer near the wall the leading-order solution is 
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y1(s) = (s + 1)ll2 + 1. (C 3) 

fo(r;s) - Bl(s)cosh ( ~ ’ / ~ ( 1  - r ) ) ,  (C 4) 

and the condition of matching with (C2a) requires that Bl(s) - 2e-Yl(S)/2 (with 
algebraically smaller errors). The correction to fo outside this layer (like that to 80) 
is exponentially small. 

Substituting from (C 2b) into (4.4), we obtain 

qs, 2 + 1)-1/2 - 3 1 + o(1) = 2,  

s7 = z(z + 7 )  

(C 5 )  

(C 6) 

from which the position of the saddle point is determined as 
1 1 - 2 -  1 + o(l), 

in which the error term is exponentially small. Evaluating the functions in (C2) at 
s = s, leads straightforwardly to (5.6), (5.7) in $5.2, and also to the leading-order 
approximation for 4 in (5.5). 

The correction function p can be found similarly by using this approximate solution 
in (4.7~). It is found that both the area-weighted cross-sectional average of p and 
its value at r = 0 are exponentially small as 2 + -;. However, the flow-weighted 
average in this limit is given by 

The correction term in (5.5) can be obtained by extending the approximate solution 
(C2) to one of the form 

f o ( r ; s )  = f t ) < r ;  s )  + j $ ) ( r ;  s) + . . . , 
8o(s) = 4s + y1(s) + y2(s) + . . . 

The governing equation for ft) is found to be 

subject to boundary conditions 

ft) = o at r =o, 

with algebraically smaller errors. Applying Green’s theorem to the functions ff’ and 
ft), and using the governing equations (C 1) and (C 9) together with (C 2a), we find 
that 
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again with algebraically smaller errors. The improved approximation (5.5) for Cp(z) 
follows from this result after a little more manipulation. 

C.2. Asymptotic solution for z -+ 00 

We require asymptotic approximations for fo  and lo in the limit s -+ -00. In this case 
we expect f o  will be largest in a thin region near the wall r = 1, and exponentially 
smaller elsewhere. A balance can be achieved between the terms of ( C l )  by means 
of the scalings 

y = (-s)’/2 (1 - r ) ,  /O - -Ao(-s) , 
the resulting form of the equation is 

(C 13) 3/2. 

in which the size of terms omitted relative to those retained is (-s)-’12. This suggests 
a series development for /O of the form 

e0(s) = --A~(--S)~/~ - A ~ ( - s )  - A ~ ( - s ) ~ / ~  - + o(-s)-’/~, (C 15) 

with a similar series for fo, except that since f o  is constrained to be of order unity 
near the axis, it will be exponentially large in s near the wall, and its size must be 
determined by matching with the solution in the interior. Matching requires that 
f,-, -+ 0 as y -+ 00, and together with the condition of zero gradient at the wall, 
this defines an eigenvalue problem which determines Ao. The smallest eigenvalue 
corresponds to, at leading order, 

(C 16) 

in which a; is the first (negative) root of Ai’, and B ~ ( s )  must be determined by 
matching with the solution in the interior. By a straightforward but tedious regular 
perturbation calculation the higher-order corrections can be found in terms of Airy 
functions and their derivatives, and application of the boundary condition at r = 1 
allows the constants 21, A2 and A3 to be determined. In this way we find that 

fo(r;s) - B2(s)Ai ((4A0)’~~y - ( ~ A o ) - ~ / ~ ) ,  with A0 = :1ai1-3/2 fi: 0.2431, 

(C 17) 1 
1 

ill = & + +i 4o 1-3 = 0.3128, 

A2 = &Ia\13/2 + glai/-3/2 + x1aiI-9/2 160 fi: 0.3335, 

A3 = & I u ; ~ ’  + & + % I U \ I - ~  + & I u ~ I - ~  = 0.3376. 

Substituting the resulting series solution for /o into (4.4), solving for s, and using the 
definition (4.7a), we obtain a series approximation for Cp as z -+ 00, of the form (5.11), 
with coefficients given by 

(C 18) 

32 ‘ 3  8 

2.637, 

Cpo = fi: 2.507, Cp1 = TlalI - 5 fi: 5.168, 
- =lar 13 - !!! - -%la’ 1-3 6 - 105 1 25 100 1 

~p~ - 4 1 8 4 1 ~ ’  13 9223 27 2625 1 5250 5 0 0 1 ~ ; 1 - 3  - & I u ; ~ - ~  fi: -0.1525. 

To determine &(s) in (C 16), it is necessary to find an asymptotic approximation 
for f o  in the region away from the wall. Application of the WKBJ method gives, for 
the range with r >> ( - s ) - ~ / ~  and 1 - r >> (--s)-l12, 

f o ( r ; s )  - ~ ~ ( s ) r - ’ / ~ ( l -  r2)-ll4 exp ( lr (s - 2/o(s)(l - r”)) ‘ I2 dr’) . (C 19) 
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Using (5.10) the exponent is found to be equal to 
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2-1/2~,!,/2 (r(1- r2l1l2 + sin-' r )  (-s)3/4 

+2-3/2~;1/2 (Alr(1- r2)'l2 - (1 - 11)  sin-' r) (-s)' /~ + o(1) as s + -a. (C 20) 

Finally, the solution (C 19) is found to break down when r becomes comparable with 
( - s ) - ~ / ~ ,  and in this range we find instead 

in +hich the condition f o  = 1 at r = 0 has been used to determine the multiplicative 
constant. Now matching with (C 19), (C 20) determines B ~ ( s ) ,  and further matching 
with (C 16) gives B2(s) .  Finally, evaluating these solutions for f o  in the three regions 
at s = s, (and of course retaining all but the asymptotically small contributions to 
the exponent of (C 19)) gives (5.12). 

The dominant contributions to the cross-sectional integrals of f o  come from the 
thin region near the wall where the function is exponentially large. For use in (4.3), 
the integral J u f i  dA is required, and to leading order it can be expressed in terms of 
the integral 

Qo = l,:(u - a;)Ai(u)'du = 0.1985, (C 22) 

while the cross-sectional averages occurring in (5.15), (5.16) are expressed in terms of 

Q1 = 1,; Ai(u) du PZ 0.8091, 

Q2 = I m ( u  - a;)Ai(u) du = 0.8243. 
4 

(C 23a) 

(C 23b) 
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